
Scalable Cluster Administration -

Chiba City I Approach and Lessons Learned

John-Paul Navarro, Rémy Evard, Dan Nurmi, Narayan Desai

Mathematics and Computer Science Division

Argonne National Laboratory

{navarro, evard, nurmi, desai}@mcs.anl.gov

Abstract

Systems administrators of large clusters often need to

perform the same administrative task hundreds or
thousands of times. Administrators have traditionally

performed some time-consuming tasks, such as operating

system installation, configuration, and maintenance,
manually. By combining network services such as DHCP,

TFTP, FTP, HTTP, and NFS with remote hardware

control and scripted installation, configuration, and
maintenance techniques, cluster administrators can

automate these administrative tasks.

Scalable cluster administration addresses this
challenge: What hardware and software design

techniques can cluster builders use to automate cluster

administration on very large clusters? We describe the
approach used in the Mathematics and Computer Science

Division of Argonne National Laboratory on Chiba City I,
a 314-node Linux cluster; and we analyze the scalability,

flexibility, performance and reliability benefits and

limitations from that approach.

1. Introduction

In 1994 Thomas Sterling and Don Becker, then

working for NASA, built the first commodity PC-based

cluster from sixteen PCs [1][2][3]. This new platform

quickly gained acceptance amongst computer and

computational scientists for delivering super-computer

performance for many applications at a fraction of super-

computer cost. Today many educational and research

organizations use the commodity PC-based cluster as

their high-performance computing platform of choice.

While the PC-based cluster has brought high-

performance computing to small and medium

organizations, it has also become a significant presence

amongst the largest super-computers in the world. See the

Top 500 super-computers list at http://www.top500.org/

[4].

The trend towards larger clusters has introduced a new

set of design and scalability challenges for cluster

administrators [5].

To address these challenges administrators have

looked for ways to automate administrative activities. The

first step in automating cluster administration generally

involves setting up one or more hosts running network

services used in automated boot, build, monitor and other

cluster administration activities. Common network based

administration support services include:

o DHCP for network initialization

o TFTP for boot image delivery

o FTP, HTTP, NFS, and SMB for file delivery

o A configuration information delivery service

o SNMP for monitoring and event notification

o SYSLOG for OS and core service logging

o DNS for host name resolution

o NTP for time synchronization

We call machines providing these services

“management servers”. The challenge is to determine

how many management servers are needed and how the

services are distributed between them.

Most clusters require very few management servers.

For all small clusters, and most medium to large clusters,

an organization’s existing infrastructure servers can

provide these services to clusters.

To determine whether one management server is

sufficient an administrator must determine how many

cluster clients will concurrently use the services and how

quickly these management service requests must be

handled.

In addition, services used during different phases in a

machine’s life cycle may have totally different usage

patterns and performance characteristics. For example,

network interface configurations with DHCP and boot

image delivery with TFTP are generally only used at

machine boot time and require relatively little

management server capacity to service. File delivery

services using protocols such as FTP, HTTP, NFS, and

SMB are used heavily during machine build or upgrade.

These services also demand significant storage and

network capacity to house and deliver the files. Logging

(SYSLOG), monitoring (SNMP), and remote console

services are most important during normal operations and

typically have constant low to moderate requirements.

As the size of a cluster grows and the build and

reconfiguration rates increase, the demand for these

services may exceed the capabilities of a single machine

or of the available infrastructure servers. Two options to

address this management scalability limitation include

separating services onto different machines and upgrading

servers so they can service more requests. These steps are

generally enough to scale most management services for

large clusters.

What are the scalability characteristics of the various

services? Some services, such as file delivery services,

may need to deliver hundreds of megabytes in order to

build a single node. How does one scale these services so

that hundreds of nodes can rebuild in a short period of

time? This paper presents the scalable cluster

management approach used to address these and similar

questions on Chiba City I at Argonne National

Laboratory.

2. Importance of Management Scalability

For most clusters, management scalability is not an

issue, because the number of managed nodes is low, the

rebuild and reconfigure rates are low, or the rebuild and

reconfigure performance is not a concern.

Management scalability is important on Chiba City

because its primary purpose is to be a scalability testbed,

built from open source components, for the high-

performance computing and computer science

communities. As a scalability testbed, Chiba City is

dedicated to the research, development, and testing of

architectures, algorithms, software, and protocols that

push the scalability boundary of clusters and the

applications that run on them.

Although built and operated primarily using open

source software, the goal is for Chiba City software to

support installation and operation of any open or closed-

source operating system on non-management nodes. In

support of this objective we developed a cluster

administration toolkit, called the City Toolkit [7],

designed to support the unattended installation of

arbitrary operating systems. Because Chiba City is a

testbed we need to rebuild and reconfigure nodes

frequently. The combination of a large node count and a

high rebuild and reconfiguration rate makes a scalable

cluster management design critical.

With a scalable cluster management design, rebuilds,

reconfigurations, and general management activities can

run quickly, efficiently and will improve overall cluster

availability and reliability.

Using the City Toolkit, we can change a master

configuration database that specifies the desired image

(OS + configuration) for any number of managed nodes

and can complete a parallel rebuild in less than 30

minutes. Our long-term goal is to support node rebuilds

on demand; for example, to support dynamic OS

requirements on a per job basis and so that a kernel

developer is able to quickly rebuild 500 nodes with a

custom kernel for scalability testing and debugging.

Another reason scalable management is important is

that with the widespread adoption of clusters for high-

performance computing, we believe the research and

commercial communities will deploy clusters with tens

and possibly hundreds of thousands of nodes in the next

20 years. As a scalability testbed, Chiba City must be able

to provide an environment where researchers can

investigate scalable software and management challenges

that will undoubtedly affect all very large commodity PC-

based clusters.

3. Chiba City Management Architecture

Figure 1 shows all the components in Chiba City.

8 Computing Towns

(256 systems)
1 Visualization Town

(32 systems)
1 Storage Town

(8 systems)

Cluster Management

and Services

(18 systems)

High Performance

Myrinet Network

Management

Ethernet Network

Fig. 1. Chiba City component diagram

Physically, Chiba City comprises blocks of physically

contiguous nodes called towns. A town consists of

between 8 and 32 application-usable nodes, one

management node called a mayor, an Ethernet network

switch, serial concentrators connecting node serial ports

to the mayor, and network-addressable remote power

controllers. Most Chiba City towns fit into two racks. The

only management-related cables coming from the two

town racks are dual Gigabit Ethernet uplinks, one

management Ethernet network uplink, the mayor’s serial

port cable, and five power cables. A town has all the

hardware necessary to operate as an independent

subcluster. As a matter of fact we’ve taken one such

Chiba City town to a conference.

Towns are not merely a physical partitioning scheme.

The concept defines how management software and

services--required to build, configure, and operate the

nodes in a town--work. An example of that physical and

management link is the boot-and-build process for nodes.

When a node boots, it sends its boot loader prompt (LILO

or GRUB) over its serial port. The town mayor, which

runs serial port monitoring software, detects that boot

loader prompt and sends a response, telling the node

either to boot or build. The build tools used to build a

node and the software packages installed on that node are

accessed from the mayor via NFS or HTTP/FTP.

The mayor provides the following services:

o Relay or proxy access to the master cluster database

o DHCP for configuring network interfaces

o TFTP access to boot images

o Console monitoring, logging, and interactive access

o Root NFS used during node build and debugging

o NFS access to non-local software

o NFS, HTTP, or FTP access to software packages

installed during a build

o NFS-based file relay service for copying files to or

from the nodes before and after job runs (Chiba City

doesn’t have a global general-purpose file system)

o Relay service for global management commands

Managing the town mayors, login machines, file

servers, and other servers is a master management server

called the president. The president behaves like a mayor

to the nodes it manages. In addition, the president

contains the master copy of the images (OS +

configuration), layered software packages, and the master

cluster configuration database. To synchronize software

between the president and the mayors we use rsync [10].

Access to the master configuration database on the

president is available through proxies on mayors.

We chose this three level hierarchical design because

we felt it could architecturally be extended to more levels,

thus providing a form of scalability. Using a ratio of 32

managed nodes to one management server we could build

a 1024-node cluster with the current three levels in Chiba

City. Using the same managed to management node

ratio, using four hierarchical levels we could build a

cluster with over 32,000 nodes.

As an example of how this management hierarchy

affects administrative activities, the following steps

describe the process of modifying a node image and

rebuilding nodes with that image. Images, as we defined

them in the City tools, are the combination of disk

initialization information (partitions, file-system types,

and initial file-system contents), a collection of scripts

that drive the build process, and a set of software

packages and configuration files.

1. Change the node image on the president (for

example, change the desired root file-system size).

2. Rsync all the images from the president to the

mayors.

3. Modify the master configuration database specifying

which nodes need the new image.

4. Reboot or remotely power cycle the nodes that need

the new image.

The nodes then boot and are directed by their mayor to

build with the database specified image. When the nodes

finish building they update the master configuration

database.

4. Elements of the Chiba City Management

Architecture That Scaled Well

Overall we found many aspects of the Chiba

management architecture worked well on a 314-node

cluster. The following sections describe these aspects

that, in principle, we feel could be used to manage

clusters with tens of thousands of nodes.

4.1 Dedicated Management Servers

An important aspect of our design is that management

servers are not available to user applications. Although

that design decision seems obvious to us, many people

consider this a hardware tax because the hardware isn’t

available to cluster users. Separating management servers

is particularly important in our environment because most

cluster applications expect dedicated node access.

Dedicated node access is important for many parallel

applications because they execute on multiple nodes in

lock-step and when any single node experiences

slowdown all the nodes running that application are

affected.

Our cluster build-and-configure software was designed

to run in a RedHat Linux environment. The software

requirements for the management services are often

different from those of the application software. For

example, currently our management and software runs

under RedHat 7.1, but is capable of installing on user

nodes other versions of RedHat, different distributions

such as Mandrake, or other operating systems such as

FreeBSD.

4.2 Specialized Management Server Hardware

Management servers need a hardware configuration

tuned for running management services. This hardware

configuration may often be different from what user

application require. For example, management servers

may require hundreds of gigabytes of disk to store or

cache software packages, high-performance gigabit

commodity networks to handle high conventional TCP/IP

communication loads, and multiple CPUs to handle very

high context switching rates associated with many clients

making simultaneous management service requests. To

fulfill these hardware requirements, high-end large

footprint machines are needed. In contrast, large clusters

typically look for very small footprint machines for

workhorses nodes used by cluster applications. One

thousand 1U application nodes can require 25 standard

racks. If a compute node is 2U, 3U, or 4U, the necessary

floor space doubles, triples, or quadruples.

Selecting the appropriate management server hardware

is more important than we had originally thought. Care

should be taken that the appropriate amount of RAM,

number of CPUs, disk space, I/O bandwidth, and network

bandwidth are available on management servers.

4.3 Master Management Server

Once settled on dedicated management servers, one

needs to decide how to distribute services between those

servers. The approach used on Chiba City was to give a

single machine the role of master management server,

which we called the president. A president is the

authoritative source for all software and configuration

information, the recipient of all status information, and

the point from which all administrative function could be

issued. We found this model to be straightforward and

easy to use. From the president we have the ability to

build, configure, and update other management servers

and to initiate management operations that are forwarded

to the mayors responsible for the desired target nodes. We

believe that a canonical source for all software, from

which all management commands might be issued, should

scale to any size cluster. For this to be the case, though,

management software must divide and delegate

operations to subordinate management servers.

4.4 Rebuildable Management Nodes

Once we established that we had single master

management server, the president, we developed

procedures for rebuilding other management servers. It

then became possible to rebuild a management node and

transfer the president role to it using only a few manual

steps, in effect upgrading the president. The scalability

advantage in automating management server builds is that

it’s easy to add more management servers as the number

of managed nodes grows.

4.5 Remote Power Control

Remote network-based power control is an essential

component of hands-off administration. Without it, some

administrative and operational activities would require

individuals walking up and down aisles of computer racks

pushing buttons. This is impractical, not just from a

human time/cost perspective, but also because of the

likelihood of pushing the wrong button.

4.6 Remote Console

We found a remote console to be a useful tool for node

identification, boot control, and network failure diagnosis

and recovery. In vary large clusters a remote console may

not be essential if network or other techniques are used to

identify nodes and control the boot process.

4.7 Parallel Management Algorithms

Early in the City Toolkit design we realized that along

with parallel hardware and management servers

independently managing a subset of nodes, we also

needed parallel management software algorithms. One

very effective tool we used heavily is PDSH [8]. PDSH

provides a simple thread based model for executing

commands on multiple nodes in parallel.

As mentioned above, another essential design point in

scalable management software is delegation. By taking a

single centrally issued command, splitting it into parallel

components, and delegating those to other management

servers, arbitrary management operations can scale to

thousands of nodes and can execute quickly.

5. Elements of the Chiba Management

Architecture That Did Not Scale Well

Two and a half years of operational experience with

the current Chiba City management architecture has

revealed several deficiencies that we feel must be

addressed in order to effectively administer even larger

clusters. These deficiencies can be grouped into the

following categories: limited flexibility, poor

performance, high overhead or complexity, and lack of

fault tolerance. Key deficiencies follow.

5.1 Hard Mapping between Managed and

Management Nodes

The most unscalable and problematic aspect of the

Chiba City management architecture was the direct

dependence between a fixed set of contiguous nodes and a

single management server. One consequence was very

poor management service load distribution where a subset

of management servers would be overloaded while the

remaining servers were effectively idle.

5.2 Management Node Failures

When a mayor fails, all of the nodes beneath it in the

hierarchy also fail due to NFS, DHCP, console, and other

dependencies. Moreover, it is also impossible to rebuild

or reconfigure dependent nodes because the client-to-

mayor link is wired in hardware and software designs.

In the worst-case scenario, where the president fails,

the entire cluster becomes unusable because most

administrative activities depend in some way on the

central configuration database.

5.3 Console Access through Management Nodes

Having console access tied to specific mayors meant

that if a mayor was unavailable all the nodes it managed

would be unusable.

5.4 All Management Services on Every Mayor

To make every town operate as an independent sub-

cluster we configured every mayor with all the

management services. This is very inefficient and a major

headache to support since many services could be

provided by fewer servers, or even one. Two examples

are DHCP and the master configuration database. In our

particular case in which all Chiba City was under a single

flat IP space, running 11 DHCP servers on the same

subnet was a challenge.

5.5 Unsuitability of Some Services for a

Hierarchy

Some management services, such as DHCP, NTP,

TFTP, and console are more difficult to install and

operate hierarchically (and don’t require or benefit from

it).

5.6 Ratio of Management Server to Managed

Node

It’s impossible to pick a single “right” ratio of mayor

to managed nodes for all services because each service

has different scaling characteristics. For example, the

number of concurrent NTP or DHCP requests that a

single server can handle is very large, probably in the

hundreds or thousands, while the number of concurrent

lHTTP or FTP large file get requests that could be

handled is quite small (in the 10-20 range if the

management node has approximate 10x better Ethernet

bandwidth than the nodes it manages). If both of these

classes of service are configured in a fixed 32 client to 1

server ratio, as was the case on Chiba City, we end up

having more NTP and DHCP servers than are needed and

fewer HTTP and FTP servers than could be effectively

utilized.

Consequently we found a 32 to 1 ratio compromise

misses almost all the optimal client to server ratio targets.

5.7 Hierarchical Configuration and Software

Push

Pushing configuration changes and commands down

the three level hierarchy is a time consuming process.

Having to deal with four or five levels would be a serious

problem. For example, to apply software or configuration

changes to nodes requires applying the change on the

president, pushing the change iteratively down the

hierarchy, and applying the change on the target

machines. This multi-step, fixed-path design is vulnerable

to cascading failures. At one point we had 200 MB of

software required on every management node; pushing

this much software every time we changed something was

a slow and painful process, even when using a smart push

tool like rsync.

5.8 Configuration database bottleneck

Most administrative cluster activities require

information from the configuration databases. Some

notable examples include information on: whether to boot

or rebuild a machine when it powers up, which image,

software packages, and configurations to apply to a node

being rebuilt, and which users have access to which

nodes.

The combined effect of this direct database access is

that our database could be overwhelmed during intense

build, configuration, or job start/exit activity.

6. Conclusion

Management scalability is a hard problem. It’s also a

moving target. As management scalability problems are

identified and fixed we are able to build and operate

larger clusters. With larger cluster we find new scalability

challenges that were not apparent at a smaller scale.

Our first architecture has taught us many valuable

lessons and Chiba City I has proven to be an excellent

platform to carry out scalable design experiments. This

has been the case because we have the ability to take

interesting new ideas and deploy them to establish real

benefits and disadvantages.

In the category of flexibility we have learned that:

o The ratio of managed node to management server

needs to be based on the scalability characteristics of

each service instead of a hard ratio derived from the

scaling characteristics of the least scalable service. A

design is needed that will allow use of different ratios

for different services.

o In clusters with serial console, tying node consoles to

a single management server limits where the services

using that console may run. We need a more

network-like model for console access that makes

consoles available to many services on multiple

management servers.

o While a hierarchical approach may work well for

some services it doesn’t work well for others. We

need a more flexible design that can distribute

services between as many machines as necessary

using a topology appropriate for each service.

In the category of performance we’ve learned that:

o Statically linking managed node to a specific

management node leads to poor server load

distribution. This directly affects management

service performance.

o Instead of using multiple steps to push software down

the hierarchy we need more intelligent demand based

caching. If software and configuration changes are

cached on demand, applying configuration changes

could be more automated and efficient.

o NFS performs poorly.

In the category of Fault Tolerance we have learned:

o By depending on a single president for most

administrative activities we have created a single

point of failure that can bring an entire cluster down.

o When managed nodes depend on specific

management nodes any management node failure can

bring parts of a cluster down. Those part of the

cluster will remain down until the failed management

node is fixed.

o NFS failure situations are difficult to recover from.

We need to use more fault tolerant networking

protocols between managed and management nodes.

o The net effect of making managed nodes depend on

individual management nodes, or a single president,

is that any management failure gets amplified to the

remaining cluster nodes. More research is needed to

reverse this amplification effect.

7. Future Work

Based on our experience we have identified several

management design changes that we intend to investigate

which could lead to architectures capable of managing

thousands of nodes.

To address the single point of failure problem with the

president while maintaining the advantages of an

authoritative configuration, software, and administrative

machine, we are going to explore applying high-

availability techniques to the president. One of the leading

president services that could benefit from high-

availability is the master configuration database.

More research into stateless network protocols and

dynamic or flexible managed to management node links

could lead to a solution to the management node failure

amplification effect and to the unbalanced management

server utilization problem.

Although the hierarchy has in some ways been useful,

we believe research needs to be done into alternate

topologies tuned to the specific requirements of various

management services.

Another intriguing management service design

approach that we believe needs to be explored is using

parallel application programming techniques, such as

MPI, to design and develop these services. We see

parallelization of management applications and

commands as a promising scaling technique. There is no

reason to believe that the scalability benefits achieved by

applications using parallel techniques could not apply to

management services and applications.

Finally, to avoid pushing complete software

repositories between management servers, additional

research should be done into using demand based

software distribution and caching techniques.

8. Acknowledgments

This work was supported by the Mathematical,

Information, and Computational Sciences Division

subprogram of the Office of Advanced Scientific

Computing Research, U.S. Department of Energy, under

Contract W-31-109-Eng-38.

9. References

[1] www.beowulf.org Information on Beowulf and Commodity

PC based clusters.

[2] D. J. Becker, T. L. Sterling, D. F. Savarese, J.E. Dorband,

U.A. Ranawak, and C.V. Packer. Beowulf: A Parallel

Workstation for Scientific Computation. Proceedings of the

International Conference on Parallel Processing, 1995.

[3] T. L. Sterling, J. Salmon, and D. J. Becker. How to Build a

Beowulf: A Guide to the Implementation and Application of PC

Clusters. MIT Press, 1999.

[4] www.top500.org. Top 500 super-computers in the world.

[5] D. S. Greenberg, R. B. Brightwell, L. A. Fisk, A. B.

Maccabe, and R. E. Riesen. A System Software Architecture for

High-End Computing. Proceedings of Supercomputing '97,

1997.

[6] J. Challenger, P. Dantzin, and A. Iyengar. A Scalable and

Highly Available System for Serving Dynamic Data at

Frequently Accessed Web Sites. Proceedings of

Supercomputing ’98, 1998.

[8] The City Toolkit: http://www.mcs.anl.gov/systems/software/

[8] The parallel distributed shell (PDSH):

http://www.llnl.gov/icc/lc/pdsh.html

[9] Chiba City Design: http://www.mcs.anl.gov/chiba/

[10] File synchronization using rsync.

http://www.samba.org/rsync.

